Activation of Triply Periodic Minimal Surface (TPMS) microarchitectures with LaNiO₃based perovskites for low temperature ammonia decomposition

¹ Institute CNR-ITAE, Via Salita S. Lucia sopra Contesse n. 5, 98126 S. Lucia, Messina, Italy

June 30th to July 3rd, 2024, in Milazzo (Messina, Italy)

INTRODUCTION

Corresponding Author: minju.thomas@itae.cnr.it

The present work deals with the synthesis, characterization, of LaNiO₃ based perovskites with varying A site dopant (Mg,Sr,Ce,Y) and investigation of catalytic ammonia decomposition in the temperature range of 300-600 °C. The second part of the work include catalytic activation of (by a wash-coating method) of Triply Periodic Minimal Surface (TPMS) microarchitectures 3D-printed in a cylindrical shape ($\emptyset = 1$ cm, Length = 1.5 cm), in Ni-alloy and with various structural parameters (porosity, cell type). The general aim is to intensify the hydrogen generation with structured catalysts with geometries that allow the integration with H_2 selective membranes in a membrane-based reactor to increase productivity at low temperatures (300-450°C).

Operative conditions

100r

TEM analysis La_{0.1}Mg_{0.9}NiO₃

