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XMEM: Pioneering the Future of Energy and 

Sustainability

• Who are we?

XMEM B.V. is a cleantech company created in 2024 and 

based in Eindhoven, building on over 15 years of pioneering 

R&D conducted at TU Eindhoven and Tecnalia

• Ambition 

Delivering groundbreaking solutions based on our advanced 

carbon membrane for gas separation and defossilized fuel 

production

• Why it matters?

The global transition to a sustainable economy requires 

integrating electrification with circular carbon flows, 

leveraging both biogenic and non-biogenic carbon.

XMEM operates at the nexus of the hydrogen and carbon economy, acknowledging 

customers' diversity in resources, infrastructure, and policy. 

We deliver cost-competitive and sustainable solutions to support their energy transition



CARBON 

MOLECULAR SIEVE 

MEMBRANES

OUR TECHNOLOGY

WHY CARBON MEMBRANES ARE 

BETTER THAN OTHER SEPARATION 

TECHNOLOGIES?

EXTREME CHEMICAL STABILITY2.
• Tolerates pH of 0 to 14

• Temperature range of -20°C to 700°C

• Wide pressure range, from ultra vacuum to 120 bar

TUNABLE PROPERTIES

• Pore size distribution

• Hydrophobicity / hydrophylicity

3.

SUSTAINABLE WITH LOWER COST

• No critical raw material needed

• Easy to recycle

4.

WIDE RANGE OF APPLICATIONS

• Tested for more than 22 applications related to carbon 

capture, biogas upgrading, ammonia synthesis and 

cracking, hydrogen deblending, helium recovery, 

methanol and DME synthesis, methanation, etc.

5.

3 MEMBRANE PRODUCT FAMILIES1.
• Dedicated to gas separation (e.g CO2, H2, He) and 

membrane reactor (e/bio molecules) applications 

• 7 patents protecting the technology

• TRL 6-7 at system level
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Addressing the dual challenges of Climate change 

and Energy security

• Context and challenges

– Unprecedented challenges: mitigating climate change,

ensuring energy security, and managing resources

sustainably.

– Global warming impacts require urgent solutions,

particularly decarbonizing hard-to-abate sectors

(transport, industry, energy).

– Europe’s dependence on imports for fossil fuels and

critical resources creates environmental, economic, and

strategic risks.

• Dependency and risks

– 90% of EU natural gas is imported (€150B in 2022), 

shifting reliance from Russia to Norway/U.S.

– Fertilizer imports surged by 117%, exposing agriculture to 

risks.

– 97% of EU oil is imported (€300B in 2022), with record 

Russian LNG imports (16.5M tonnes in 2024). 



How Gas Price Instability Fuels Inflation? 

• Unprecedented Gas Price Spike in 2022

– Peak gas price: €235.5/MWh in 2022 (over 767% the 

standard deviation of pre-2021 prices).

– Average price surge: €123.6/MWh compared to 

~€27.14/MWh (pre-2021). 

• Gas price increase due to both

– Supply disruptions (e.g., Russian gas cuts) likely 

accounted for a larger share.

– Demand shocks (e.g., precautionary stockpiling, 

economic recovery) in a context of inelastic demand 

and extreme weather also played a significant role.

• Broad Inflationary Impact

– Each 10% gas price rise due to supply disruptions

equivalent to 0,85% inflation on energy, food, goods, 

and services

– Each 10% gas price rise due to demand shock equivalent

to 0,66% inflation on energy, food, goods, and services



Energy Sector Vulnerability and Policy Responses 

• Energy Sector Dependency

– Gas prices account for 20% of EU energy production costs.

– Surging gas prices in 2022 significantly increased energy 

costs across sectors.

• Producer Price Increases (PPI)

– The Producer Price Index (PPI) measures the average rate 

of change in prices producers receive for their goods and 

services at the wholesale level.

• It reflects cost pressures faced by producers, which often get 

passed on to consumers as inflation. 

– Energy PPI: +7.6% at the Peak of the supply shock

• Reflects the rise in costs energy producers charge for electricity, heating, and 

natural gas.

– Food PPI: +1.5% at its Peak of the supply shock

• Tracks the increase in wholesale prices for food production

• Policy intervention 

– EU governments spent €646 billion in 2022 to protect 

households and businesses from soaring energy costs 

Source : European commission



EU's Comprehensive Strategy for Climate Neutrality

• Recognizing the Challenge

– The EU tackles climate change and energy security under the 

European Green Deal. Goal: Climate neutrality by 2050 with 

economic resilience and sustainability.

• Key Pillars

– REPowerEU

• Goal: Energy security, reduce gas imports.

• Target of 10 million tonnes of imports from third party countries by 2030 

with 4 MT/yr of green ammonia

• Total investment cost are expected to be in the range € 335-471 billion, 

with € 200-300 billion needed for additional renewable electricity 

production (500TWh)

• 35 bcm biomethane/year by 2030.Supported by anaerobic digestion, 

syngas methanation.

– FIT for 55 with ambition to reduce by 55% CO2 emission 

compared to 1990 level

• Encompassing key regulations and directives for industry, aviation and 

shipping

– Farm to Fork

• Target: Cut synthetic fertilizer use by 20%.

• Promote biochar, sustainable farming, less import dependency.



E-fuel and biofuel push through regulations

FIT for 55 – Renewable energy directive III



E-fuel and biofuel push through regulations

• ReFuelEU Aviation: Mandates the progressive 

uptake of sustainable aviation fuels (SAFs), 

targeting :

– At least 2% SAF by 2025, 6% by 2030, and 70% by 2050

– Gradual integration of synthetic fuels (e-fuels), reaching 

0.7% by 2030 and 35% by 2050

– Encourages the adoption of advanced biofuels and 

power-to-liquid fuels to reduce reliance on conventional 

jet fuel

• FuelEU Maritime sets maximum limits for the yearly 

average greenhouse gas (GHG) intensity of the 

energy used by ships above 5,000 gross tonnage 

calling at European ports

– 2% GHG reduction by 2025, increasing to 80% by 2050 (not 

only CO2 but also methane and Nox)

– Emissions are assessed over the entire lifecycle of the fuel 

(from “extraction” to combusiton)

– Onshore power supply or alternative zero emission 

technologies  from 1st January 

FIT for 55 – RefuelEU Aviation & FuelEU maritime



Energy demand for hard-to-abate industries : the 

magnitude of the problem

• Electricity demand in a full

« Green Hydrogen » scenario

for key hard-to-abate

industries

• Wind and Solar cumulated

generates in Europe around 1/5

of the energy needed to

defossilize the shipping

industry alone (2023 data)

• We will need a LOT of

renewable, Biomass and Fuel

to defossilize hard-to-abate

industries



Defossilization imply modular and flexible catalytic systems: 

Renewables are intermittent but chemical plants are not

• The largest fossil ammonia plant

worldwide produce 3760 Mtpd (SAFCO,

ThyssenKrupp)

• Average solar capacity factor in

Europe is 9,7%, onshore wind 23,7%

and offshore around 30%

– 1,2GWe PV installed capacity with the

average European capacity factor would

feed a 200-250 tons/day ammonia plant

– 1,2GWe onshore wind : 1000ton/day for

onshore wind

• Coping with renewable additionality

principles and reducing PPA cost

implies to develop flexible and

modular e-molecules system with high

turndown ratio



Membrane reactors can play a role in the 

defossilization of hard to abate industries…



…. As well as membrane gas separation



Defossilization of the steel industry

• Blast Furnace (BF) Route

– Production Share: Accounts for 60% of 

Europe’s crude steel production.

– Feedstock: Iron ore, coal, and some scrap.

– CO2 Emissions:

• ~2.3 tons of CO2 per ton of steel produced (~2 

tons of CO2 per ton of crude steel in Europe).

• High emissions due to coal being the primary 

reducing agent.

• Electric Arc Furnace (EAF) Route:

– Production Share: Accounts for 40% of 

Europe’s crude steel production.

• Feedstock: Primarily scrap metal.

• CO2 Emissions:

• ~0.3 tons of CO2 per ton of steel (when using 

renewable electricity).

• Emissions are significantly lower than the BF 

route, largely dependent on the electricity 

source.

16

Source : WorldSteel association



Steel Industry Transformation: Decarbonization 

Under Regulatory Pressure

• Upcoming Challenges for BF 

Infrastructure:

– 74% of European blast furnaces require 

significant reinvestments by 2030.

– This aging infrastructure will lead to the 

progressive phase-out of blast furnaces.

• Future of Steelmaking: Direct Reduced Iron 

(DRI) and Electrical arc furnaces:

– Produced using high-grade iron ore in shaft 

furnaces.

– Set to replace BF pig iron as a primary input 

for steelmaking.

– Increased Scrap Utilization:

– More Electric Arc Furnaces (EAFs) will be 

deployed, significantly increasing scrap 

consumption.
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Source: BloombergNEF. For a more detailed breakdown, see BNEF New Energy Outlook 2022 .MOE is molten oxide electrolysis.
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Steel Industry Transformation: Decarbonization 

Under Regulatory Pressure

• Coexistence of BF-BOF and NG/H₂ DRI Routes:

– BF-BOF and NG/H₂ DRI will coexist for at least the next 

20 years to meet steel demand during the transition to 

low-carbon technologies

• Competitiveness challenges

– Higher costs due to reliance on natural gas and limited 

hydrogen availability (H2-DRI/EAF projected to around 

800 €/ton crude steel)

– The cost of transitioning to hydrogen-based DRI is 

high, requiring large-scale renewable energy and 

hydrogen production.

• Decarbonization priorities

– BF/BOF: Requires CCUS integration and process

optimization (e.g., hydrogen injection) to reduce

emissions.

– NG/H₂ DRI: Transition from natural gas to hydrogen

must maximize efficiency and cost-effectiveness.

18

HRC cost structure from BF (bottom) and EAF (left) – Source JRC



Introduction to the direct reduction iron concept

• Hot Briquetted Iron (HBI) is a substitute of

sponge Iron and is produced from high grade

iron ore pellets

• DRI is today produced using natural gas and

around 10 new plants have been announced

in Europe

• Transition by addition of green H2 or direct

replacement is also proposed with several

project ongoing in Europe

• In both cases, separation are essential

– CO2 capture is already implemented in numerous

NG/DRI plant by TENOVA

– Hydrogen recovery is essential in H2/DRI plant to

maintain adequate economics

Source : MIDREX

Source : 10.3390/ma11101865



Selective CO₂ Separation Using Tailored Carbon 

Molecular Sieve Membranes

• Gas Composition Tested : Composition: 4%

Hydrogen (H₂), 22.4% Carbon Dioxide (CO₂), 73.6%

Nitrogen (N₂), Water vapor added via a humidifier

to simulate real-world conditions.

• CO₂/N₂ Ideal Selectivity increased up to 150 under

operating conditions of 300°C and 20 bar with

functionalized membranes.

• Functionalization with ethylenediamine led to

enhanced molecular sieving and CO₂ adsorption:

• Reduced pore sizes.

• Increased CO₂-permeance and adsorption

sites.

• Functionalized CMSMs outperform non-

functionalized ones, achieving selectivities beyond

Robeson’s upper bound.



Hydrogen selective membrane for steel and other 

application. Example of deblending
• Hydrogen selectivities and deblending cost projection

H2 deblending
Hydrogen separation cost for 

20%/80% H2/CH4 - Hydrogen 

deblending from natural gas. 

• Stable performance @ 5-150°C

• H2/CH4 selectivity up to 3200 at 50 °C 



Ammonia: A Key Component in Fertilizers and 

Hydrogen Economy

• Ammonia (NH₃) is the foundation of all

nitrogen fertilizers, containing the highest

nitrogen concentration at 82%.

• Fertilizer Processing: Environmental and

practical concerns often lead to its

conversion into products like urea or

nitrates before application.

• Supply Diversification:

– In 2021, the EU imported ~26 million tonnes of

nitrogen fertilizers and intermediates

(nitrogen and phosphates).

– Heavy reliance on external suppliers

highlights the urgent need to diversify

ammonia supply sources to ensure stability

and resilience.

– Typical US ammonia production cost around

250€/ton while current EU green ammonia

pricing lies between 800 and 1500 €/ton



Carbon Membrane and membrane reactors for 

ammonia and fertilizers

Ammonia synthesis

Source : Carbon Molecular Sieve Membrane Reactors for Ammonia Cracking, V.Cechetto, G. Anello, A. 
Rahimalimamaghani and F. Gallucci, Processes 2024, 12, 1168. https://doi.org/10.3390/pr12061168

NH3

Retentate: N2

Permeate: H2Novel technology

MEMBRANE REACTOR

NH3 decomposition reaction 

into H2 and N2 and H2 

separation are simultaneously 

performed, FC grade can be 

reached with polishing

98% conversion for 
T>475°C 

Conventional system

Reaction unit 

working at high 

temperature 

and low 

pressure

H2/N2 

separation 

unit

NH3

H2 + N2 

  

H2
Off-gasesH2/N2 separation 

system

Off-gases

Ideal H2/N2 selectivity >380 at 

100°C  with performance 

stable up to 350°C

Ammonia Cracking



Sustainable Aviation Fuels (SAF): A Key to 

Decarbonizing Aviation

• Sustainable Aviation Fuel (SAF) is a low-carbon alternative to traditional jet fuel, derived from

sustainable feedstocks like waste oils, agricultural residues, municipal solid waste, and 

renewable energy.

• Global SAF demand by 2050

– Between 400 and 650 billions liters required annually (ICF report 2021, WEF-CST 2022)

– Less than 300 million liters produced annually currently

• SAF Technologies and Adoption : 

– 142 facilities announced globally for 33 billion liters per year (Argus, 2023)

• HEFA (Hydroprocessed Esters and Fatty Acids) dominates with 56 facilities globally, making it the most mature and widely

adopted SAF technology.

• Emerging technologies are gaining traction:

– Power-to-Liquid (PtL): 27 facilities.

– Alcohol-to-Jet (AtJ): 21 facilities.

– Fischer-Tropsch (FT): 20 facilities.

– Co-processing (integration of renewable feedstock into existing refineries): 13 facilities.

– Pyrolysis: 1 facility. 

– Europe leads with the highest number of SAF facilities, followed by the Asia-Pacific region and the USA.



Pathways for Sustainable Aviation Fuel (SAF) 

Production



Economic and Production Insights for Sustainable 

Aviation Fuel (SAF)

• Production Costs and Market Price

– Current SAF prices can reach $3,400 per ton (Argus Media, 2023), 

making them 3–6 times higher than conventional jet fuel prices

• Technology Comparisons

– Fischer-Tropsch (FT): Delivers 40% SAF from the total liquid output.

– Alcohol-to-Jet (ATJ): Offers a higher yield, producing up to 70–90% SAF,

depending on the process.

– Remaining outputs include diesel, gasoline, and light hydrocarbons

– ATJ and HEFA facilities can scale up to 1 billion liters per year due to 

their liquid feedstocks.

– Gasification facilities remain smaller, constrained by solid biomass 

logistics, lower energy density, and yields. 

• Capital Investment Challenges

– Pioneer plants (first-generation facilities) require significantly higher 

capital investments compared to Nth plants (scaled, mature facilities).

– Technologies like Power-to-Liquid (PtL) and gasification are the most 

capital-intensive, while HEFA remains cost-effective for near-term 

deployment. 

Source : State of the EU SAF market in 2023, Fuel reference prices, 
SAF capacity assessments (2024), Europea Union Aviation Safety 
Agency



Water-selective membrane reactor for CO2 

Hydrogenation reactions and (catalytic) water 

removal

CMS membrane for ethanol dehydration

and catalytic conversion

Example of water selective membrane 

reactor (Case of DME – C2FUEL project)

• Lower pressure, high conversion per pass (+35% 

CO2 conversion)

• Same principle for RWGS or methanol synthesis



Biomethane Production Potential in Europe by 2040

• By 2040, Europe could produce 111 

billion cubic meters (bcm) of 

biomethane annually, with 101 bcm 

coming from EU-27 countries. This 

production is split between:

• Anaerobic Digestion (1G Biomethane): 74 

bcm (67% of total)

• Thermal Gasification (2G Biomethane): 37 

bcm (33% of total)

• As a comparison :  

– A typical NG-ammonia plant 

(2000ton/day) consume 0,53 bcm/yr

– France consume annually 350 TWh of 

gas for heating equivalent to 32 

bcm/yr



1G Biomethane production costs show large 

economies of scale

• Work performed by the biomethane industrial 

partnership to understand the status of 1G 

biomethane development in Europe

• Total Costs Range: €54–91/MWh, highlighting 

economies of scale in larger facilities.

• Cost Breakdown:

– Capital Costs: Decrease significantly with scale.

– Operational Costs: Remain stable across all sizes.

– Feedstock Costs: Public feedstocks can lead to 

lower or negative costs.

• Facility Sizes:

– Small (500–1,300 m³/h): ~€84/MWh (all 

feedstocks).Medium (300–780 m³/h): ~€91/MWh 

(excluding public feedstocks).Large (>2,000 m³/h): 

~€54/MWh (economies of scale).

Source : Biomethane Industrial Partnership 2023



Biogas Upgrading: Costs and Essential Role in 

Biomethane Production

• Membrane Separation: Used in ~40% of facilities 

in 2021, accounting for 70% of CAPEX and 60% of 

OPEX submissions

• Upgrading capital costs decrease by ~33% as 

facility size increases.

• Upgrading operational cost reaches up to 13 

€/MWh (more or less 1,3€/Nm3) for a 2000 Nm3/hr 

plant equivalent to 25% of the biomethane 

levelized cost

• Estimate from studies shows membrane 

biomethane upgrading at cost around 0,2 €/Nm3 

for typical 60%/40% CH4/CO2 gas mixtures

• XMEM membrane shows outstanding 

performances for biogas upgrading with selectivity 

>350 in mixed gas conditions (around one order of 

magnitude higher than existing commercial 

polymeric membranes)

©Source : 
Biomethane
Industrial
Partnership 
2023



XMEM, versatile membrane solutions for a 

Feedstock-Driven, Multi-Energy Vector Transition

• There is no single solution for the energy transition. Our future economy will 

integrate biogenic resources, electrification, carbon utilization, and hydrogen, 

reflecting the diverse approaches required for a sustainable transformation. 

• Membrane and membrane reactors can play a key role in minimizing green

premium on defossilized commodities improving recovery of valuable feedstock

(e.g hydrogen, biogenic CO2) and allowing for flexible, efficient and compact e-

/biofuel

• XMEM, TU/e and Tecnalia have developed a membrane product portfolio with

outstanding performance for key separation and reaction valuable to the energy

transition

• XMEM is currently working at upscaling membrane manufacturing reducing system

capital cost by several fold aiming to produce membrane at scale by 2028



www.xmem.nl

linkedin.com/company/xmem/
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